To my wife, Margaret Wheland Couch, and to our children, Leon III, Jonathan, and Rebecca
CONTENTS

PREFACE xiii

LIST OF SYMBOLS xvii

1 INTRODUCTION 1

1–1 Historical Perspective 3
1–2 Digital and Analog Sources and Systems 5
1–3 Deterministic and Random Waveforms 6
1–4 Organization of the Book 7
1–5 Use of a Personal Computer and MATLAB 8
1–6 Block Diagram of a Communication System 8
1–7 Frequency Allocations 10
1–8 Propagation of Electromagnetic Waves 12
1–9 Information Measure 17
1–10 Channel Capacity and Ideal Communication Systems 19
1–11 Coding 20
 Block Codes, 21
 Convolutional Codes, 23
 Code Interleaving, 26
 Code Performance, 26
 Trellis-Coded Modulation, 28
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–12 Preview 30</td>
</tr>
<tr>
<td>1–13 Study-Aid Examples 30</td>
</tr>
<tr>
<td>Problems 31</td>
</tr>
</tbody>
</table>

2 SIGNALS AND SPECTRA 34

2–1 Properties of Signals and Noise 34
 Physically Realizable Waveforms, 35
 Time Average Operator, 36
 DC Value, 37
 Power, 38
 RMS Value and Normalized Power, 40
 Energy and Power Waveforms, 41
 Decibel, 41
 Phasors, 43

2–2 Fourier Transform and Spectra 44
 Definition, 44
 Properties of Fourier Transforms, 48
 Parseval's Theorem and Energy Spectral Density, 49
 Dirac Delta Function and Unit Step Function, 52
 Rectangular and Triangular Pulses, 55
 Convolution, 60

2–3 Power Spectral Density and Autocorrelation Function 63
 Power Spectral Density, 63
 Autocorrelation Function, 65

2–4 Orthogonal Series Representation of Signals and Noise 67
 Orthogonal Functions, 68
 Orthogonal Series, 69

2–5 Fourier Series 71
 Complex Fourier Series, 71
 Quadrature Fourier Series, 72
 Polar Fourier Series, 74
 Line Spectra for Periodic Waveforms, 75
 Power Spectral Density for Periodic Waveforms, 80

2–6 Review of Linear Systems 82
 Linear Time-Invariant Systems, 82
 Impulse Response, 82
 Transfer Function, 83
 Distortionless Transmission, 86
 Distortion of Audio, Video, and Data Signals, 89

2–7 Bandlimited Signals and Noise 89
 Bandlimited Waveforms, 90
 Sampling Theorem, 90
 Impulse Sampling and Digital Signal Processing, 93
 Dimensionality Theorem, 95
2–8 Discrete Fourier Transform 97
 Using the DFT to Compute the Continuous Fourier Transform, 98
 Using the DFT to Compute the Fourier Series, 103
2–9 Bandwidth of Signals 105
2–10 Summary 112
2–11 Study-Aid Examples 113
Problems 117

3 BASEBAND PULSE AND DIGITAL SIGNALING 132

3–1 Introduction 132
3–2 Pulse Amplitude Modulation 133
 Natural Sampling (Gating), 133
 Instantaneous Sampling (Flat-Top PAM), 137
3–3 Pulse Code Modulation 141
 Sampling, Quantizing, and Encoding, 142
 Practical PCM Circuits, 145
 Bandwidth of PCM Signals, 146
 Effects of Noise, 148
 Nonuniform Quantizing: µ-Law and A-Law Compingding, 152
3–4 Digital Signaling 155
 Vector Representation, 157
 Bandwidth Estimation, 160
 Binary Signaling, 160
 Multilevel Signaling, 162
3–5 Line Codes and Spectra 164
 Binary Line Coding, 164
 Power Spectra for Binary Line Codes, 167
 Differential Coding, 174
 Eye Patterns, 175
 Regenerative Repeaters, 176
 Bit Synchronization, 178
 Power Spectra for Multilevel Polar NRZ Signals, 181
 Spectral Efficiency, 184
3–6 Intersymbol Interference 185
 Nyquist’s First Method (Zero ISI), 188
 Raised Cosine-Rolloff Nyquist Filtering, 189
 Nyquist’s Second and Third Methods for Control of ISI, 194
3–7 Differential Pulse Code Modulation 194
3–8 Delta Modulation 198
 Granular Noise and Slope Overload Noise, 201
 Adaptive Delta Modulation and Continuously Variable Slope Delta Modulation, 203
 Speech Coding, 204
Contents

4–16 Transmitters and Receivers 290
 Generalized Transmitters, 290
 Generalized Receiver: The Superheterodyne Receiver, 292
 Zero-IF Receivers, 296
 Interference, 297

4–17 Software Radios 297

4–18 Summary 299
4–19 Study-Aid Examples 299

Problems 305

5 AM, FM, AND DIGITAL MODULATED SYSTEMS 313

5–1 Amplitude Modulation 314

5–2 AM Broadcast Technical Standards and Digital AM Broadcasting 319
 Digital AM Broadcasting, 320

5–3 Double-Sideband Suppressed Carrier 321

5–4 Costas Loop and Squaring Loop 322

5–5 Asymmetric Sideband Signals 324
 Single Sideband, 324
 Vestigial Sideband, 328

5–6 Phase Modulation and Frequency Modulation 331
 Representation of PM and FM Signals, 331
 Spectra of Angle-Modulated Signals, 336
 Narrowband Angle Modulation, 341
 Wideband Frequency Modulation, 342
 Preemphasis and Deemphasis in Angle-Modulated Systems, 346

5–7 Frequency-Division Multiplexing and FM Stereo 348

5–8 FM Broadcast Technical Standards and Digital FM Broadcasting 351
 Digital FM Broadcasting, 351

5–9 Binary Modulated Bandpass Signaling 353
 On-Off Keying (OOK), 353
 Binary Phase-Shift Keying (BPSK), 357
 Differential Phase-Shift Keying (DPSK), 359
 Frequency-Shift Keying (FSK), 359

5–10 Multilevel Modulated Bandpass Signaling 366
 Quadrature Phase-Shift Keying and M-ary Phase-Shift Keying, 367
 Quadrature Amplitude Modulation (QAM), 370
 OQPSK and π/4 QPSK, 371
 PSD for MPSK, QAM, QPSK, OQPSK, and π/4 QPSK, 374
 Spectral Efficiency for MPSK, QAM, QPSK, OQPSK, and π/4 QPSK
 with Raised Cosine Filtering, 376
5–11 Minimum-Shift Keying and GMSK 378
5–12 Orthogonal Frequency Division Multiplexing (OFDM) 385
5–13 Spread Spectrum Systems 388
Direct Sequence, 389
Frequency Hopping, 396
SS Frequency Bands, 397
5–14 Summary 397
5–15 Study-Aid Examples 397
Problems 401

6 RANDOM PROCESSES AND SPECTRAL ANALYSIS 414

6–1 Some Basic Definitions 415
Random Processes, 415
Stationarity and Ergodicity, 416
Correlation Functions and Wide-Sense Stationarity, 420
Complex Random Processes, 423
6–2 Power Spectral Density 424
Definition, 424
Wiener-Khintchine Theorem, 426
Properties of the PSD, 428
General Formula for the PSD of Digital Signals, 433
White-Noise Processes, 435
Measurement of PSD, 436
6–3 DC and RMS Values for Ergodic Random Processes 437
6–4 Linear Systems 439
Input-Output Relationships, 439
6–5 Bandwidth Measures 444
Equivalent Bandwidth, 444
RMS Bandwidth, 444
6–6 The Gaussian Random Process 446
Properties of Gaussian Processes, 448
6–7 Bandpass Processes 450
Bandpass Representations, 450
Properties of WSS Bandpass Processes, 454
Proofs of Some Properties, 459
6–8 Matched Filters 464
General Results, 464
Results for White Noise, 466
Correlation Processing, 469
Transversal Matched Filter, 471
6–9 Summary 475
Contents

6–10 Appendix: Proof of Schwarz’s Inequality 477
6–11 Study-Aid Examples 479

Problems 481

7 PERFORMANCE OF COMMUNICATION SYSTEMS CORRUPTED BY NOISE 492

7–1 Error Probabilities for Binary Signaling 493
 General Results, 493
 Results for Gaussian Noise, 495
 Results for White Gaussian Noise and Matched-Filter Reception, 497
 Results for Colored Gaussian Noise and Matched-Filter Reception, 498

7–2 Performance of Baseband Binary Systems 499
 Unipolar Signaling, 499
 Polar Signaling, 502
 Bipolar Signaling, 502

7–3 Coherent Detection of Bandpass Binary Signals 504
 On-Off Keying, 504
 Binary-Phase-Shift Keying, 506
 Frequency-Shift Keying, 507

7–4 Noncoherent Detection of Bandpass Binary Signals 511
 On-Off Keying, 511
 Frequency-Shift Keying, 515
 Differential Phase-Shift Keying, 517

7–5 Quadrature Phase-Shift Keying and Minimum-Shift Keying 519

7–6 Comparison of Digital Signaling Systems 521
 Bit-Error Rate and Bandwidth, 521
 Symbol Error and Bit Error for Multilevel Signaling, 523
 Synchronization, 524

7–7 Output Signal-to-Noise Ratio for PCM Systems 525

7–8 Output Signal-to-Noise Ratios for Analog Systems 530
 Comparison with Baseband Systems, 531
 AM Systems with Product Detection, 532
 AM Systems with Envelope Detection, 533
 DSB-SC Systems, 535
 SSB Systems, 535
 PM Systems, 536
 FM Systems, 540
 FM Systems with Threshold Extension, 543
 FM Systems with Deemphasis, 545

7–9 Comparison of Analog Signaling Systems 548
 Ideal System Performance, 548
8 WIRE AND WIRELESS COMMUNICATION APPLICATIONS 569

8–1 The Explosive Growth of Telecommunications 569

8–2 Telephone Systems 570
 Historical Basis, 570
 Modern Telephone Systems and Remote Terminals, 571

8–3 Digital Subscriber Lines (DSL) 577
 G.DMT and G.Lite Digital Subscriber Lines, 578
 Video On Demand (VOD), 580
 Integrated Service Digital Network (ISDN), 580

8–4 Capacities of Public Switched Telephone Networks 583

8–5 Satellite Communication Systems 583
 Digital and Analog Television Transmission, 587
 Data and Telephone Signal Multiple Access, 589
 Satellite Radio Broadcasting, 595

8–6 Link Budget Analysis 597
 Signal Power Received, 597
 Thermal Noise Sources, 600
 Characterization of Noise Sources, 601
 Noise Characterization of Linear Devices, 602
 Noise Characterization of Cascaded Linear Devices, 607
 Link Budget Evaluation, 609
 E_b/N_0 Link Budget for Digital Systems, 612
 Path Loss for Urban Wireless Environments, 613

8–7 Fiber-Optic Systems 618

8–8 Cellular Telephone Systems 620
 First Generation (1G)—The AMPS Analog Circuit-switched System, 624
 Second Generation (2G)—The Digital Circuit-switched Systems, 626
 Third Generation (3G)—Digital with Circuit and Packet Switching 629
 Fourth Generation (4G)—Digital with Packet Switching 629

8–9 Television 630
 Analog Black-and-White Television, 630
 MTS Stereo Sound, 637
 Analog Color Television, 637
 Standards for TV and CATV Systems, 641
 Digital TV (DTV), 649

8–10 Cable Data Modems 653
Contents

8–11 Wireless Data Networks 655
 WiFi, 655
 WiMAX, 656

8–12 Summary 657

8–13 Study-Aid Examples 657
 Problems 662

APPENDIX A MATHEMATICAL TECHNIQUES, IDENTITIES, AND TABLES 669

A–1 Trigonometry and Complex Numbers 669
 Definitions, 669
 Trigonometric Identities and Complex Numbers, 669

A–2 Differential Calculus 670
 Definition, 670
 Differentiation Rules, 670
 Derivative Table, 670

A–3 Indeterminate Forms 671

A–4 Integral Calculus 671
 Definition, 671
 Integration Techniques, 672

A–5 Integral Tables 672
 Indefinite Integrals, 672
 Definite Integrals, 673

A–6 Series Expansions 674
 Finite Series, 674
 Infinite Series, 674

A–7 Hilbert Transform Pairs 675

A–8 The Dirac Delta Function 675
 Properties of Dirac Delta Functions, 676

A–9 Tabulation of $Sa(x) = \frac{(\sin x)}{x}$ 677

A–10 Tabulation of $Q(z)$ 678

APPENDIX B PROBABILITY AND RANDOM VARIABLES 680

B–1 Introduction 680

B–2 Sets 681

B–3 Probability and Relative Frequency 682
 Simple Probability, 682
 Joint Probability, 683
 Conditional Probabilities, 684

B–4 Random Variables 685
B–5 Cumulative Distribution Functions and Probability Density Functions 685
Properties of CDFs and PDFs, 688
Discrete and Continuous Distributions, 688

B–6 Ensemble Average and Moments 692
Ensemble Average, 692
Moments, 693

B–7 Examples of Important Distributions 695
Binomial Distribution, 695
Poisson Distribution, 698
Uniform Distribution, 698
Gaussian Distribution, 698
Sinusoidal Distribution, 703

B–8 Functional Transformations of Random Variables 704

B–9 Multivariate Statistics 709
Multivariate CDFs and PDFs, 709
Bivariate Statistics, 711
Gaussian Bivariate Distribution, 712
Multivariate Functional Transformation, 712
Central Limit Theorem, 715

Problems 716

APPENDIX C USING MATLAB 723
C–1 About the MATLAB M-Files 724
C–2 Quick Start for Running M-Files 724
C–3 Programming in MATLAB 725

REFERENCES 727
ANSWERS TO SELECTED PROBLEMS 739
INDEX 747
Continuing the tradition of the first through the seventh editions of *Digital and Analog Communication Systems*, this eighth edition provides the latest up-to-date treatment of digital communication systems. It is written as a textbook for junior or senior engineering students and is also appropriate for an introductory graduate course. It also provides a modern technical reference for the practicing electrical engineer. A *Student Solutions Manual* contains detailed solutions for over 100 selected end-of-the-chapter homework problems. For the selected problems that have computer solutions, MATLAB solution files are available for downloading from the Web. To download the *Student Solutions Manual* and the MATLAB files, go to www.pearsonhighered.com/couch.

One major change for this eighth edition is the addition of more than 100 examples distributed throughout the chapters of the text. Students are always asking for more examples. Most of these new examples have a problem description that consists of only a few lines of text. The solutions for these examples are contained within MATLAB files (downloaded from the Web site given earlier). These files include the procedure for the solution (as described by comment lines in the MATLAB program) and produce computed and plotted solutions. This presentation procedure has several advantages. First, the description for each example takes only a few lines
in this textbook, so the book will not be extended in length. Second, the student will have the experience of learning to work with MATLAB (as demonstrated with the example solutions). Clearly plotted results, which are better than hand calculations, are given. The student can also vary the parameters in the MATLAB example to discover how the results will be affected. The author believes that this approach to examples is a great innovative teaching tool.

To learn about communication systems, it is essential to first understand how communication systems work. Based on the principles of communications that are covered in the first five chapters of this book (power, frequency spectra, and Fourier analysis), this understanding is motivated by the use of extensive examples, study-aid problems, and the inclusion of adopted standards. Especially interesting is the material on wire and wireless communication systems. Also of importance is the effect of noise on these systems, since, without noise (described by probability and random processes), one could communicate to the limits of the universe with negligible transmitted power. In summary, this book covers the essentials needed for the understanding of wire and wireless communication systems and includes adopted standards. These essentials are

- How communication systems work: Chapters 1 through 5.
- The effect of noise: Chapters 6 and 7.
- Wire and Wireless Communication Applications: Chapter 8.

This book is ideal for either a one-semester or a two-semester course. This book emphasizes basic material and applications that can be covered in a one-semester course, as well as the essential material that should be covered for a two-semester course. This emphasis means that the page count needs to be limited to around 750 pages. For a book with a larger page count, it is impossible to cover all that additional material, even in a two-semester course. (Many schools are moving toward one basic course offering in communications.)

Topics such as, coding, wireless signal propagation, WiMAX, and Long Term Evolution (LTE) of cellular systems are covered in this book. In-depth coverage of important topics such as these should be done by additional courses with their own textbooks.

For a one-semester course, the basics of how communication systems work may be taught by using the first five chapters (with selected readings from Chapter 8). For a two-semester course, the whole book is used.

This book covers practical aspects of communication systems developed from a sound theoretical basis.

THE THEORETICAL BASIS

- Digital and analog signals
- Magnitude and phase spectra
- Fourier analysis
- Orthogonal function theory
- Power spectral density
- Linear systems
- Nonlinear systems
- Intersymbol interference
- Complex envelopes
- Modulation theory
- Probability and random processes
- Matched filters
- Calculation of SNR
- Calculation of BER
- Optimum systems
- Block and convolutional codes
Preface

THE PRACTICAL APPLICATIONS

- PAM, PCM, DPCM, DM, PWM, and PPM baseband signaling
- OOK, BPSK, QPSK, MPSK, MSK, OFDM, and QAM bandpass digital signaling
- AM, DSB-SC, SSB, VSB, PM, and FM bandpass analog signaling
- Time-division multiplexing and the standards used
- Digital line codes and spectra
- Circuits used in communication systems
- Bit, frame, and carrier synchronizers
- Software radios
- Frequency-division multiplexing and the standards used
- Telecommunication systems
- Telephone systems
- DSL modems
- Digital subscriber lines
- Satellite communication systems
- Satellite radio broadcasting systems
- Effective input-noise temperature and noise figure
- Link budget analysis
- SNR at the output of analog communication systems
- BER for digital communication systems
- Fiber-optic systems
- Spread-spectrum systems
- AMPS, GSM, iDEN, TDMA, CDMA, WiMAX, and LTE cellular telephone systems
- Digital and analog television systems
- Technical standards for AM, FM, TV, DTV, and CATV
- Cable data modems
- Wi-Fi and WiMAX wireless networks
- MATLAB M files on the Web
- Mathematical tables
- Study-aid examples
- Over 100 examples with solutions. About 80 of these examples include MATLAB solutions.
- Over 550 homework problems with selected answers
- Over 60 computer-solution homework problems
- Extensive references
- Emphasis on the design of communication systems
- Student Solutions Manual (download)

WHAT’S NEW IN THIS EDITION

- Addition of over 100 examples with solutions that are distributed throughout the chapters of the book. Most of them have MATLAB computer solutions obtained via electronic M files which are downloaded free-of-charge from author’s Web site.
- Includes up-to-date descriptions of popular wireless systems, LTE (long-term evolution) and WiMax 4G cellular systems, and personal communication applications.
- Includes latest updates on digital TV (DTV) technology.
- Brings terminology and standards up-to-date.
- Brings references up-to-date.
- Updates all chapters.
Preface

• Includes additional and revised homework problems.
• Includes suggestions for obtaining the latest information on applications and standards by using the appropriate keyword queries on internet search engines, such as Google.
• Continues the emphasis on MATLAB computer solutions to problems. This approach of using computer solutions is very important in training new communication engineers. This is one of the very few books that includes the actual electronic files for MATLAB solutions (available for free downloading from the internet). This is done so that the reader does not have to spend days in error-prone typing of lines of computer code that are listed in a textbook.
• Updates all MATLAB files to run on Version R2010b.
• Extends list of Answers to Selected Problems at the end of the book, with MATLAB solutions if appropriate.

Many of the homework problems are marked with a personal computer symbol, ⚽. This indicates that MATLAB computer solutions are available for this problem.

Homework problems are found at the end of each chapter. Complete solutions for those marked with a ⭐, approximately 1/3, are found in the Student Solutions Manual, available for free download at www.pearsonhighered.com/couch. Student M-files are also available for download. Complete solutions for all problems, including the computer solution problems, are given in the Instructor Solutions Manual (available only to instructors from Pearson/Prentice Hall). These manuals include Acrobat pdf files for the written solutions. Also, for the problems with computer solutions, MATLAB M files are given. Instructor’s should contact their local Pearson rep for access.

This book is an outgrowth of my teaching at the University of Florida and is tempered by my experiences as an amateur radio operator (K4GWQ). I believe that the reader will not understand the technical material unless he or she works some homework problems. Consequently, over 550 problems have been included. Some of them are easy, so that the beginning student will not become frustrated, and some are difficult enough to challenge the more advanced students. All of the problems are designed to provoke thought about, and understanding of, communication systems.

I appreciate the help of the many people who have contributed to this book and the very helpful comments that have been provided by the many reviewers over the years. In particular, I thank K. R. Rao, University of Texas, Arlington; Jitendra J. Tugnait, Auburn University; John F. McDonald, Rensselaer Polytechnic Institute; Bruce A. Ferguson, Rose-Hulman Institute of Technology; Ladimer S. Nagurney, University of Hartford; Jeffrey Carruthers, Boston University; and Hen-Geul Yeh, California State University, Long Beach. I also appreciate the help of my colleagues at the University of Florida. I thank my wife, Dr. Margaret Couch, who typed the original and revised manuscripts and has proofread all page proofs.

LEON W. COUCH, II
Gainesville, Florida

Leon_w.Couch@ufl.edu